Hot and sick: impacts of warming and oomycete parasite infection on endemic dominant zooplankter of Lake Baikal

Author:

Ozersky TedORCID,Nakov Teofil,Hampton Stephanie E.,Rodenhouse Nicholas L.,Shchapov Kirill,Woo Kara H.,Wright Katie,Pislegina Helena V.,Izmest’eva Lyubov R.,Silow Eugene A.,Timofeev Maxim A.,Moore Marianne V.

Abstract

AbstractClimate warming impacts ecosystems through multiple interacting pathways, including via direct thermal responses of individual taxa and the combined responses of closely interacting species. In this study we examined how warming and infection by an oomycete parasite affect the dominant zooplankter of Russia’s Lake Baikal, the endemic cold-adapted stenotherm Epischura baikalensis (Copepoda). We used a combination of laboratory experiments, long-term monitoring data and population modeling. Experiments showed large thermal mismatch between host and parasite, with strong negative effects of warm temperatures on E. baikalensis survival and reproduction and a negative synergistic effect of Saprolegnia infection. However, Saprolegnia infection had an unexpected positive effect on E. baikalensis reproductive output, which may be consistent with fecundity compensation by infected females. Long-term monitoring data showed that Saprolegnia infections were most common during the warmest periods of the year and that infected individuals tended to accumulate in deep water. Population models, parameterized with experimental and literature data, correctly predicted the timing of Saprolegnia epizootics, but overestimated the negative effect of warming on E.baikalensis populations. Models suggest that diel vertical migration may allow E. baikalensis to escape the negative effects of increasing temperatures and parasitism and enable E. baikalensis to persist as Lake Baikal warms. Our results contribute to understanding of how multiple interacting stressors affect warming pelagic ecosystems of cold lakes and oceans and show that the population-level consequences of thermal mismatch between hosts and parasites can vary seasonally, interannual and spatially.

Publisher

Cold Spring Harbor Laboratory

Reference66 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3