Extraordinary claims require extraordinary evidence in the case of asserted mtDNA biparental inheritance

Author:

Salas AntonioORCID,Schönherr Sebastian,Bandelt Hans-Jürgen,Gómez-Carballa AlbertoORCID,Weissensteiner Hansi

Abstract

AbstractA breakthrough article published in PNAS by Luo et al. (2018) challenges a central dogma in biology which states that the mitochondrial DNA (mtDNA) is inherited exclusively from the mother. By sequencing the mitogenomes of several members of three independent families, the authors inferred an unprecedented pattern of biparental inheritance that requires the participation of an autosomal nuclear factor in the molecular process. However, a comprehensive analysis of their data reveals a number of issues that must be carefully addressed before challenging the current paradigm. Unfortunately, the methods section lacks any description of sample management, validation of their results in independent laboratories was deficient, and the reported findings have been observed at a frequency at complete variance with established evidence. Moreover, the remarkably high (and unusually homogeneous) levels of heteroplasmy reported can be readily detected using classical techniques for DNA sequencing. By reassessing the raw sequencing data with an alternative computational pipeline, we report strong correlation to the NextGENe results provided by the authors on a per sample base. However, the sequencing replicates from the same donors show aberrations in the variants detected that need further investigation to exclude contributions from other sources or methodological artifacts. Finally, applying the principle of reductio ad absurdum, we demonstrate that the nuclear factor invoked by the authors would need to be extraordinarily complex and precise in order to preclude linear accumulation of mtDNA lineages across generations. We discuss alternate scenarios that explain findings of the same nature as reported by Luo et al., in the context of in-vitro fertilization and therapeutic mtDNA replacement ooplasmic transplantation.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3