Integrative methylome and transcriptome analysis of Japanese flounder (Paralichthys olivaceus) skeletal muscle during development

Author:

Zhang Jingru,Wu Shuxian,Huang Yajuan,Wen Haishen,Zhang Meizhao,Li Jifang,Li Yun,Qi Xin,He Feng

Abstract

AbstractDNA methylation is an important epigenetic modification in vertebrate and is essential for epigenetic gene regulation in skeletal muscle development. We showed the genome-wide DNA methylation profile in skeletal muscle tissue of larval 7dph (JP1), juvenile 90dph (JP2), adult female 24 months (JP3) and adult male 24 months (JP4) Japanese flounder. The distribution and levels of methylated DNA within genomic features (1stexons, gene body, introns, TSS200, TSS1500 and intergenic) show different developmental landscapes. We also successfully identified differentially methylated regions (DMRs) and different methylated genes (DMGs) through a comparative analysis, indicating that DMR in gene body, intron and intergenic regions were more compared to other regions of all DNA elements. A gene ontology analysis indicated that the DMGs were mainly related to regulation of skeletal muscle fiber development process, Axon guidance, Adherens junction, and some ATPase activity. Methylome and transcriptome clearly revealed a exhibit a negative correlation. And integration analysis revealed a total of 425, 398 and 429 negatively correlated genes with methylation in the JP2_VS_JP1, JP3_VS_JP1 and JP4_VS_JP1 comparison groups, respectively. And these genes were functionally associated with pathways including Adherens junction, Axon guidance, Focal adhesion, cell junctions, Actin cytoskeleton and Wnt signaling pathways. In addition, we validated the MethylRAD results by bisulfite sequencing PCR (BSP) in some of the differentially methylated skeletal muscle growth-related genes (Myod1, Six1 and Ctnnb1). In this study, we have generated the genome-wide profile of methylome and transcriptome in Japanese flounder for the first time, and our results bring new insights into the epigenetic regulation of developmental processes in Japanese flounder. This study contributes to the knowledge on epigenetics in vertebrates.Author summaryEpigenetic mechanisms like DNA methylation have recently reported as vital regulators of some species skeletal muscle development through the control of genes related to growth. To date, although genome-wide DNA methylation profiles of many organisms have been reported and the Japanese flounder reference genome and whole transcriptome data are publically available, the methylation pattern of Japanese flounder skeletal muscle tissue remains minimally studied and the global DNA methylation data are yet to be known. Here we investigated the genome-wide DNA methylation patterns in Japanese flounder, throughout its development. These findings help to enrich research in molecular and developmental biology in vertebrates.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3