FOXS1 is a Master Regulator of Pathological Epithelial to Mesenchymal Transition in Human Epithelia

Author:

Blenkinsop Timothy AORCID,Swigut Tomasz,Boles Nathan,Srinivasan Rajini,Rada-Iglesias Alvaro,Wang Qingjie,Stern Jeffrey H,Wysocka Joanna,Temple Sally

Abstract

AbstractEpithelial to mesenchymal transition (EMT) is a biological process involved in normal tissue morphogenesis and also in disease pathology. It causes dramatic alterations in cell morphology, migration, proliferation, and phenotype. We captured the global transcriptional and epigenetic programs elicited when polarized, cobblestone human retinal pigment epithelial (RPE) cells were stimulated to undergo EMT, a process associated with several retinal pathologies. The reorganization of chromatin landscapes occurred preferentially at distal enhancers, rather than promoter regions, accompanied by 3136 significantly changing genes. Of the 95 significantly changing transcription factors, FOXS1 was most upregulated. Loss and gain of function experiments demonstrated that FOXS1 is upstream of canonical EMT regulators, and can stimulate EMT in RPE and other epithelia. Inhibition of p38, stimulated by combined action of the EMT-inducing factors, TGFβ1 and TNFα, dampened FOXS1 expression. An increase of FOXS1 in several cancers indicates it has a role in several EMT-involved pathologies.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3