TMC1 Confers a Leak Conductance to Modulate Excitability of Auditory Hair Cells in Mammals

Author:

Liu Shuang,Wang Shufeng,Zou Linzhi,Li Jie,Song Chenmeng,Chen Jiaofeng,Hu Qun,Liu Lian,Xiong WeiORCID

Abstract

ABSTRACTHearing sensation relies on the mechano-electrical transducer (MET) channel of cochlear hair cells, in which Transmembrane channel-like 1 (TMC1) and TMC2 have been proposed to be the pore-forming subunits. Meanwhile it has been reported that TMCs regulate other biological processes in a variety of lower organisms ranging from sensations to motor functions. However, it is still an open question whether TMCs play roles other than their function in MET in mammals. In this study, we report that in mouse hair cells TMC1, but not TMC2, provides a background leak conductance, with properties distinct from those of the MET channels. By cysteine substitution, 4 amino acids of TMC1 are characterized critical for the leak conductance. The leak conductance is essential for action potential firing and tonotopic along the cochlear coil. Taken together, our results suggest that TMC1 confers a background leak conductance that modulates membrane excitability in cochlear hair cells.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3