Proteoliposomes as energy transferring nanomaterials: enhancing the spectral range of light-harvesting proteins using lipid-linked chromophores

Author:

Hancock Ashley M.ORCID,Meredith Sophie A.ORCID,Connell Simon D. A.ORCID,Jeuken Lars J. C.ORCID,Adams Peter G.ORCID

Abstract

AbstractBiology provides a suite of optically-active nanomaterials in the form of “light harvesting” protein-chlorophyll complexes, however, these have drawbacks including their limited spectral range. We report the generation of model lipid membranes (proteoliposomes) incorporating the photosynthetic protein Light-Harvesting Complex II (LHCII) and lipid-tethered Texas Red (TR) chromophores that act as a “bio-hybrid” energy transferring nanomaterial. The effective spectral range of the protein is enhanced due to highly efficient energy transfer from the TR chromophores (up to 94%), producing a marked increase in LHCII fluorescence (up to 3x). Our self-assembly procedure offers excellent modularity allowing the incorporation of a range of concentrations of energy donors (TR) and acceptors (LHCII), allowing the energy transfer efficiency (ETE) and LHCII fluorescence to be tuned as desired. Fluorescence Lifetime Imaging Microscopy (FLIM) provides single-proteoliposome-level quantification of ETE, revealing distributions within the population and proving that functionality is maintained on a surface. Our membrane-based system acts as a controllable light harvesting nanomaterial with potential applications as thin films in photo-active devices.Table of Contents Figure

Publisher

Cold Spring Harbor Laboratory

Reference45 articles.

1. Solar Fuels via Artificial Photosynthesis

2. Template-Free Construction of Highly Ordered Monolayered Fluorescent Protein Nanosheets: A Bioinspired Artificial Light-Harvesting System;ACS Nano,2019

3. Artificial photosynthetic cell producing energy for protein synthesis;Nature Communications,2019

4. Nanowire-Bacteria Hybrids for Unassisted Solar Carbon Dioxide Fixation to Value-Added Chemicals;Nano Letters,2015

5. Artificial Photosynthesis on TiO2-Passivated InP Nanopillars;Nano Letters,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3