Whole-genome sequencing of six dog breeds from continuous altitudes reveals adaptation to high-altitude hypoxia

Author:

Gou Xiao,Wang Zhen,Li Ning,Qiu Feng,Xu Ze,Yan Dawei,Yang Shuli,Jia Jia,Kong Xiaoyan,Wei Zehui,Lu Shaoxiong,Lian Linsheng,Wu Changxin,Wang Xueyan,Li Guozhi,Ma Teng,Jiang Qiang,Zhao Xue,Yang Jiaqiang,Liu Baohong,Wei Dongkai,Li Hong,Yang Jianfa,Yan Yulin,Zhao Guiying,Dong Xinxing,Li Mingli,Deng Weidong,Leng Jing,Wei Chaochun,Wang Chuan,Mao Huaming,Zhang Hao,Ding Guohui,Li Yixue

Abstract

The hypoxic environment imposes severe selective pressure on species living at high altitude. To understand the genetic bases of adaptation to high altitude in dogs, we performed whole-genome sequencing of 60 dogs including five breeds living at continuous altitudes along the Tibetan Plateau from 800 to 5100 m as well as one European breed. More than 150× sequencing coverage for each breed provides us with a comprehensive assessment of the genetic polymorphisms of the dogs, including Tibetan Mastiffs. Comparison of the breeds from different altitudes reveals strong signals of population differentiation at the locus of hypoxia-related genes including endothelial Per-Arnt-Sim (PAS) domain protein 1 (EPAS1) and beta hemoglobin cluster. Notably, four novel nonsynonymous mutations specific to high-altitude dogs are identified at EPAS1, one of which occurred at a quite conserved site in the PAS domain. The association testing between EPAS1 genotypes and blood-related phenotypes on additional high-altitude dogs reveals that the homozygous mutation is associated with decreased blood flow resistance, which may help to improve hemorheologic fitness. Interestingly, EPAS1 was also identified as a selective target in Tibetan highlanders, though no amino acid changes were found. Thus, our results not only indicate parallel evolution of humans and dogs in adaptation to high-altitude hypoxia, but also provide a new opportunity to study the role of EPAS1 in the adaptive processes.

Funder

State Key Basic Research Program

CAS

National Natural Science Foundation of China

Chinese Ministry for Science and Technology

Chinese High-Tech R&D Program

China Postdoctoral Science Foundation

Shanghai Postdoctoral Scientific Program

Publisher

Cold Spring Harbor Laboratory

Subject

Genetics (clinical),Genetics

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3