Towards Decoding the Metabolic Plasticity in Cancer: Coupling of Gene Regulation and Metabolic Pathways

Author:

Jia Dongya,Lu Mingyang,Jung Kwang Hwa,Park Jun Hyoung,Yu Linglin,Onuchic José N.,Kaipparettu Benny Abraham,Levine Herbert

Abstract

AbstractMetabolic plasticity enables cancer cells to switch their metabolism phenotypes between glycolysis and oxidative phosphorylation (OXPHOS) during tumorigenesis and metastasis. However, it is still largely unknown how cancer cells orchestrate gene regulation to balance their glycolysis and OXPHOS activities for better survival. Here, we establish a theoretical framework to model the coupling of gene regulation and metabolic pathways in cancer. Our modeling results demonstrate a direct association between the activities of AMPK and HIF-1, master regulators of OXPHOS and glycolysis respectively, with the activities of three metabolic pathways: glucose oxidation, glycolysis and fatty acid oxidation (FAO). Guided by the model, we develop metabolic pathway signatures to quantify the activities of glycolysis, FAO and the citric acid cycle of tumor samples by evaluating the expression levels of enzymes involved in corresponding processes. The association of AMPK/HIF-1 activity with metabolic pathway activity, predicted by the model and verified by analyzing the gene expression and metabolite abundance data of patient samples, is further validated by in vitro studies of aggressive triple negative breast cancer cell lines.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3