Grass Carp Reovirus (GCRV) Giving Its All to Suppress IFN Production by Countering MAVS-TBK1 Activation

Author:

Lu Long-Feng,Li Zhuo-Cong,Zhang Can,Zhou Xiao-Yu,Zhou Yu,Jiang Jing-Yu,Chen Dan-Dan,Li ShunORCID,Zhang Yong-AnORCID

Abstract

AbstractAs a crucial signaling pathway for interferon (IFN) production, the RIG-I-like receptor (RLR) axis is usually the host target of viruses to enhance viral infection. To date, though immune evasion methods to contrapose IFN production have been characterized for a series of terrestrial viruses, the strategies employed by fish viruses remain unclear. Here, we report that all grass carp reovirus (GCRV) proteins encoded by segments S1 to S11 interact with fish RLR factors, specifically for mitochondrial antiviral signaling protein-TANK-binding kinase 1 (MAVS-TBK1) signaling transduction, leading to decreased IFN expression. First, the GCRV viral proteins blunted the MAVS-induced expression of IFN but had little effect on TBK1-induced IFN expression. Subsequently, interestingly, co-immunoprecipitation experiments demonstrated that all GCRV viral proteins interacted with several RLR cascades, especially with TBK1. To further illustrate the mechanisms of these interactions between GCRV viral proteins and host RLRs, two of the viral proteins, NS79 (S4) and VP3 (S3), were selected as representative proteins for the study. The obtained data demonstrated that NS79 did not affect the stability of the host RLR protein, but was phosphorylated by gcTBK1, leading to the reduction of host substrate gcIRF3/7 phosphorylation. On the other hand, VP3 degraded gcMAVS and the degradation was significantly reversed by 3-MA. The biological effects of both NS79 and VP3 were consistently found to be related to the suppression of IFN expression and the promotion of viral evasion. Our findings shed light on the special evasion mechanism utilized by fish virus through IFN regulation, which might differ between fish and mammals.Author summaryThe RLR signaling pathway is crucial for IFN induction when host cells are infected with virus and RLR factors are targeted by virus. To date, the evasion mechanisms of fish viruses remain mysterious. In this study, we reveal that all 11 GCRV proteins interact with fish RLR factors and suppress the activation of MAVS-TBK1 signaling transduction, leading to the reduction of IFN expression. Two viral proteins were employed as examples to investigate the different evasion mechanisms of GCRV. These findings reveal the novel countermeasures used by fish virus to avoid the host IFN response.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3