Characterization of Drosophila Nidogen/entactin reveals roles in basement membrane stability, barrier function and nervous system plasticity

Author:

Wolfstetter GeorgORCID,Dahlitz Ina,Pfeifer KathrinORCID,Alt Joscha ArneORCID,Töpfer Uwe,Pfeifer Daniel ChristophORCID,Lakes-Harlan Reinhard,Baumgartner StefanORCID,Palmer Ruth H.ORCID,Holz AnneORCID

Abstract

AbstractBasement membranes (BMs) are specialized layers of extracellular matrix (ECM) mainly composed of Laminin, type IV Collagen, Perlecan and Nidogen/entactin (NDG). While the essential and evolutionary conserved functions of Laminin, Collagen and Perlecan are well documented in Drosophila and other species, the proposed role of NDG as the major ECM linker molecule has been challenged by several in vivo studies revealing that NDG is dispensable for viability and BM formation. Here, we report the characterization of the single Ndg gene in Drosophila. Embryonic Ndg expression differed from that of other BM components and was primarily observed in mesodermal tissues and the chordotonal organs, whereas NDG protein localized to all BMs. While loss of Laminin strongly affected BM-localization of NDG, Ndg null mutants exhibited no overt changes in the distribution of BM core components. However, loss of NDG led to ultrastructural BM defects compromising barrier function and stability in vivo. Although Ndg mutants were viable, loss of NDG led to decreased fecundity in flies as well as impaired crawling behavior and reduced response to vibrational stimuli in larvae. Further morphological analysis revealed accompanying defects in the larval peripheral nervous system especially in the chordotonal organs and the neuromuscular junction (NMJ), where Ndg genetically interacted with the Leukocyte-antigen-related-like (Lar) receptor gene to regulate NMJ extension and synaptic differentiation. Taken together, our analysis suggests that NDG is not essential for BM assembly but mediates BM stability and ECM-dependent neural plasticity during Drosophila development.Summary StatementIn this study we characterize Drosophila Nidogen/Entactin (Ndg) mutants revealing that loss of Ndg impairs basement membrane (BM) stability and permeability as well as proper function of the nervous system.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3