Sex chromosome evolution in muscid flies

Author:

Meisel Richard P.ORCID,Olafson Pia U.,Adhikari Kiran,Guerrero Felix D.,Konganti Kranti,Benoit Joshua B.

Abstract

AbstractSex chromosomes and sex determining genes can evolve fast, with the sex-linked chromosomes often differing between closely related species. A substantial body of population genetics theory has been developed and tested to explain the rapid evolution of sex chromosomes and sex determination. However, we do not know why the sex-linked chromosomes differ between some species pairs yet are relatively conserved in other taxa. Addressing this question will require comparing closely related taxa with conserved and divergent sex chromosomes and sex determination systems to identify biological features that could explain these rate differences. Cytological karyotypes suggest that muscid flies (e.g., house fly) and blow flies are such a taxonomic pair. The sex chromosomes appear to differ across muscid species, whereas they are highly conserved across blow flies. Despite the cytological evidence, we do not know the extent to which muscid sex chromosomes are independently derived along different evolutionary lineages. To address that question, we used genomic data to identify young sex chromosomes in two closely related muscid species, horn fly (Haematobia irritans) and stable fly (Stomoxys calcitrans). We provide evidence that the nascent sex chromosomes of horn fly and stable fly were derived independently from each other and from the young sex chromosomes of the closely related house fly (Musca domestica). We present three different scenarios that could have given rise to the sex chromosomes of horn fly and stable fly, and we describe how the scenarios could be distinguished. Distinguishing between these scenarios in future work could help to identify features of muscid genomes that promote sex chromosome divergence.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3