Design and Synthesis of Pleated DNA Origami Nanotubes with Adjustable Diameters

Author:

Berengut Jonathan F.,Ruan Juanfang,Kawamoto Akihiro,Lee Lawrence K.

Abstract

ABSTRACTDNA origami allows for the synthesis of nanoscale structures and machines with nanometre precision and high yields. Tubular DNA origami nanostructures are particularly useful because their geometry facilitates a variety of applications including nanoparticle encapsulation, the construction of artificial membrane pores and as structural scaffolds that can spatially arrange nanoparticles in circular, linear and helical arrays. Here we report a simple computational approach that determines minimally-strained DNA staple crossover locations for arbitrary nanotube internal angles. We apply the method in the design and synthesis of radially symmetric DNA origami nanotubes with arbitrary diameters and DNA helix stoichiometries. These include regular nanotubes where the wall of the structure is composed of a single layer of DNA helices, as well as those with a thicker pleated wall structure that have a greater rigidity and allow for continuously adjustable diameters and distances between parallel helices. We also introduce a DNA origami staple strand routing that incorporates both antiparallel and parallel crossovers and demonstrate its application to further rigidify pleated DNA nanotubes.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3