Author:
Azam Aa Haeruman,Hoshiga Fumiya,Takeuchi Ippei,Miyanaga Kazuhiko,Tanji Yasunori
Abstract
ABSTRACTWe have previously generated strains ofStaphylococcus aureusSA003 resistant to its specific phage ϕSA012 through long-term coevolution experiment. However, the DNA mutations responsible for the phenotypic change of phage resistance are unknown. Whole-genome analysis revealed six genes that acquired unique point mutations: five missense mutations and one nonsense mutation. Moreover, one deletion, 1.779-bp, resulted in the deletion of the genes encoding glycosyltransferase, TarS, and iron-sulfure repair protein, ScdA. The deletion occurred from the second round of coculture (SA003R2) and remained through the last round. The ϕSA012 infection toward SA003R2 had decreased to 79.77±7.50% according to plating efficiency. Complementation of the phage-resistant strain by the wild-type allele showed two mutated host genes were linked to the inhibition of post-adsorption, and five genes were linked to phage adsorption of ϕSA012. Unlike ϕSA012, infection by ϕSA039, a close relative of ϕSA012, onto SA003R2 was impaired drastically. Complementation of SA003R2 by wild-typetarSrestores the infectivity of ϕSA039. Thus, we concluded that ϕSA039 requires β-GlcNAc in Wall Teichoic Acid (WTA) for its binding. In silico analysis of the ϕSA039 genome revealed that several proteins in the tail and baseplate region were different from ϕSA012; notably the partial deletion oforf96of ϕSA039, a homolog oforf99of ϕSA012.Orf100of ϕSA039, a homolog ofOrf103of ϕSA012, a previously reported receptor binding protein (RBP), had low similarity (86%) to that of ϕSA012. The difference in tail and baseplate proteins might be the factor for specificity difference between ϕSA012 and ϕSA039.
Publisher
Cold Spring Harbor Laboratory