Pre- and postsynaptically expressed spiking-timing-dependent plasticity contribute differentially to neuronal learning

Author:

Mizusaki Beatriz E. P.ORCID,Li Sally S. Y.,Costa Rui Ponte,Sjöström P. JesperORCID

Abstract

AbstractA plethora of experimental studies have shown that long-term plasticity can be expressed pre- or postsynaptically depending on a range of factors such as developmental stage, synapse type, and activity patterns. The functional consequences of this diversity are unknown. However, in models of neuronal learning, long-term synaptic plasticity is implemented as changes in connective weights. Whereas postsynaptic expression of plasticity predominantly affects synaptic response amplitude, presynaptic expression alters both synaptic response amplitude and short-term dynamics. In other words, the consideration of long-term plasticity as a fixed change in amplitude corresponds more closely to post- than to presynaptic expression, which means theoretical outcomes based on this choice of implementation may have a postsynaptic bias. To explore the functional implications of the diversity of expression of long-term synaptic plasticity, we modelled spike-timing-dependent plasticity (STDP) such that it was expressed either pre- or postsynaptically, or both. We tested pair-based standard STDP models and a biologically tuned triplet STDP model, and investigated the outcome in a feed-forward setting, with two different learning schemes: either inputs were triggered at different latencies, or a subset of inputs were temporally correlated. Across different STDP models and learning paradigms, we found that presynaptic changes adjusted the speed of learning, while postsynaptic expression was better at regulating spike timing and frequency. When combining both expression loci, postsynaptic changes amplified the response range, while presynaptic plasticity maintained control over postsynaptic firing rates, potentially providing a form of activity homeostasis. Our findings highlight how the seemingly innocuous choice of implementing synaptic plasticity by direct weight modification may unwittingly introduce a postsynaptic bias in modelling outcomes. We conclude that pre- and postsynaptically expressed plasticity are not interchangeable, but enable complimentary functions.Author summaryDifferences between functional properties of pre- or postsynaptically expressed long-term plasticity have not yet been explored in much detail. In this paper, we used minimalist models of STDP with different expression loci, in search of fundamental functional consequences. Presynaptic expression acts mostly on neurotransmitter release, thereby altering short-term synaptic dynamics, whereas postsynaptic expression affects mainly synaptic gain. We compared cases where plasticity was expressed presynaptically, postsynaptically, or both. We found that postsynaptic plasticity was more effective at changing response times, while both pre- and postsynaptic plasticity were similarly capable of detecting correlated inputs. A model with biologically tuned expression of plasticity also achieved this separation over a range of frequencies without the need of external competitive mechanisms. Postsynaptic spiking frequency was not directly affected by presynaptic plasticity of short-term plasticity alone, however in combination with a postsynaptic component, it helped restrain positive feedback, contributing to activity homeostasis. In conclusion, expression locus may determine distinct coding schemes while also keeping activity within bounds. Our findings highlight the importance of correctly implementing expression of plasticity in modelling, since the locus of expression may affect functional outcomes in simulations.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3