Author:
Moulana Alief,Scanteianu Adriana,Jones DeAnalisa,Stern Alan D.,Bouhaddou Mehdi,Birtwistle Marc R.
Abstract
AbstractTranscriptomic data are widely available, and the extent to which they are predictive of protein abundances remains debated. Using multiple public databases, we calculate mRNA and mRNA-to-protein ratio variability across human tissues to quantify and classify genes for protein abundance predictability confidence. We propose that such predictability is best understood as a spectrum. A gene-specific, tissue-independent mRNA-to-protein ratio plus mRNA levels explains ∼80% of protein abundance variance for more predictable genes, as compared to ∼55% for less predictable genes. Protein abundance predictability is consistent with independent mRNA and protein data from two disparate cell lines, and mRNA-to-protein ratios estimated from publicly-available databases have predictive power in these independent datasets. Genes with higher predictability are enriched for metabolic function, tissue development/cell differentiation roles, and transmembrane transporter activity. Genes with lower predictability are associated with cell adhesion, motility and organization, the immune system, and the cytoskeleton. Surprisingly, many genes that regulate mRNA-to-protein ratios are constitutively expressed but also exhibit ratio variability, suggesting a general autoregulation mechanism whereby protein expression profile changes can be implemented quickly, or homeostatic sensing stabilizes protein abundances under fluctuating conditions. Gene classifications and their mRNA-to-protein ratios are provided as a resource to facilitate protein abundance predictions by others.
Publisher
Cold Spring Harbor Laboratory
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献