Antioxidant Gene Expression in Vocal Hindbrain of a Teleost Fish

Author:

Liao Clara,Feng Ni Y.,Bass Andrew H.

Abstract

ABSTRACTPlainfin midshipman fish (Porichthys notatus) have a remarkable capacity to generate long duration advertisement calls known as hums, each of which may last for close to two hours and be repeated throughout a night of courtship activity during the breeding season. The midshipman’s striking sound production capabilities provide a unique opportunity to investigate the mechanisms that motor neurons require for withstanding high-endurance activity. The temporal properties of midshipman vocal behaviors are largely controlled by a hindbrain central pattern generator that includes vocal motor neurons (VMN) that directly determine the activity pattern of target sonic muscles and, in turn, a sound’s pulse repetition rate, duration and pattern of amplitude modulation. Of the two adult midshipman male reproductive phenotypes -- types I and II-- only type I males acoustically court females with hums from nests that they build and guard, while type II males do not produce courtship hums but instead sneak or satellite spawn to steal fertilizations from type I males. A prior study using next generation RNA sequencing showed increased expression of a number of cellular respiration and antioxidant genes in the VMN of type I males during the breeding season, suggesting they help to combat potentially high levels of oxidative stress linked to this extreme behavior. This led to the question of whether the expression of these genes in the VMN would vary between actively humming versus non-humming states as well as between male morphs. Here, we tested the hypothesis that to combat oxidative stress, the VMN of reproductively active type I males would exhibit higher mRNA transcript levels for two superoxide dismutases (sod1,sod2) compared to the VMN of type II males and females that do not hum and in general both of which have a more limited vocal repertoire than type I males. The results showed no significant difference insod1transcript expression across reproductive morphs in the VMN and the surrounding hindbrain, and no difference ofsod2across the two male morphs and females in the SH. However, we observed a surprising, significantly lower expression ofsod2transcripts in the VMN of type I males as compared to type II males. We also found no significant difference insod1andsod2expression between actively humming and non-humming type I males in both the VMN and surrounding hindbrain. These findings overall lead us to conclude that increased transcription ofsod1andsod2is not necessary for combatting oxidative stress from the demands of the midshipman high-endurance vocalizations, but warrant future studies to assess protein levels, enzyme activity levels, as well as the expression of other antioxidant genes. These results also eliminate one of the proposed mechanisms that male midshipman use to combat potentially high levels of oxidative stress incurred by motor neurons driving long duration vocalization and provide more insight into how motor neurons are adapted to the performance of extreme behaviors.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3