Abstract
AbstractPicornaviruses, comprising important and widespread pathogens of humans and animals, have evolved to control apoptosis and autophagy for their replication and spread. However, the underlying mechanism of the association between apoptosis/autophage and viral pathogenicity remains unclear. In the present study, VP3 of picornaviruses was demonstrated to induce apoptosis and autophagy. Foot-and-mouth disease virus (FMDV), which served as a research model here, can strongly induce both apoptosis and autophagy in the skin lesions. By directly interacting with p53, FMDV-VP3 facilitates its phosphorylation and translocation, resulting in Bcl-2 family-mediated apoptosis and LC3-dependent autophagy. The single residue Gly129 of FMDV-VP3 plays a crucial role in apoptosis and autophagy induction and the interaction with p53. Consistently, the comparison of rescued FMDV with mutated Gly129 and parental virus showed that the Gly129 is indispensable for viral replication and pathogenicity. More importantly, the Gly129 locates at a bend region of random coil structure, the mutation of Gly to Ala remarkably shrunk the volume of viral cavity. Coincidentally, the Gly is conserved in the similarly location of other picornaviruses, including poliovirus (PV), enterovirus 71 (EV71), coxsackievirus (CV) and seneca valley virus (SVA). This study demonstrates that picornaviruses induce apoptosis and autophagy to facilitate its pathogenicity and the Gly is functional site, providing novel insights into picornavirus biology.
Publisher
Cold Spring Harbor Laboratory