Abstract
SummaryAcute myeloid leukemias (AML) are characterized by recurrent genomic alterations, often in transcriptional regulators, which form the basis on which current prognostication and therapeutic intervention is overlaid. In AML transformation can often be attributed to single chromosomal aberrations encoding oncogenes, such as t(15;17)-PML/RARα or t(6;9)-DEK/CAN but it is unclear how these aberrant transcription factors drive leukemic signaling and influence cellular responses to targeted therapies. Here we show that by using a novel “subtractive interaction proteomics” approach, the high risk AML-inducing oncogene t(6;9)-DEK/CAN directly activates signaling pathways that are driven by the ABL1, AKT/mTOR, and SRC family kinases. The interplay of these signaling pathways creates a network with nodes that are credible candidates for combinatorial therapeutic interventions. These results reveal specific interdependencies between nuclear oncogenes and cancer signaling pathways thus providing a foundation for the design of therapeutic strategies to better address the complexity of cancer signaling.Graphical Abstract
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献