Single-molecule imaging reveals molecular coupling between transcription and DNA repair in live cells

Author:

Ho Han NgocORCID,Oijen Antoine vanORCID,Ghodke HarshadORCID

Abstract

Actively transcribed genes are preferentially repaired in a conserved repair reaction known as transcription-coupled nucleotide excision repair1–3. During this reaction, stalled transcription elongation complexes at sites of lesions serve as a signal to trigger the assembly of nucleotide excision repair factors (reviewed in ref.4,5). In the model organism Escherichia coli, the transcription-repair coupling factor Mfd displaces the stalled RNA polymerase and hands-off the stall site to the nucleotide excision repair factors UvrAB for damage detection6–9. Despite in vitro evidence, it remains unclear how in live cells the stall site is faithfully handed over to UvrB from RNA polymerase and whether this handoff occurs via the Mfd-UvrA2-UvrB complex or via alternate reaction intermediates. Here, we visualise Mfd, the central player of transcription-coupled repair in actively growing cells and determine the catalytic requirements for faithful completion of the handoff during transcription-coupled repair. We find that the Mfd-UvrA2 complex is arrested on DNA in the absence of UvrB. Further, Mfd-UvrA2-UvrB complexes formed by UvrB mutants deficient in DNA loading and damage recognition, were also impaired in successful handoff. Our observations demonstrate that in live cells, the dissociation of Mfd is tightly coupled to successful loading of UvrB, providing a mechanism via which loading of UvrB occurs in a strand-specific manner during transcription-coupled repair.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3