Abstract
ABSTRACTThe mechanical properties of the cellular cortex regulate shape changes during cell division, cell migration and tissue morphogenesis. During cell division, contractile force generated by the molecular motor myosin II (MII) at the equatorial cortex drives cleavage furrow ingression. Cleavage furrow ingression in turn increases stresses at the polar cortex, where contractility must be regulated to maintain cell shape during cytokinesis. How polar cortex contractility controls cell shape is poorly understood. We show a balance between MII paralogs allows a fine-tuning of cortex tension at the polar cortex to maintain cell shape during cytokinesis, with MIIA driving cleavage furrow ingression and bleb formation, and MIIB serving as a stabilizing motor and mediating completion of cytokinesis. As the majority of non-muscle contractile systems are cortical, this tuning mechanism will likely be applicable to numerous processes driven by MII contractility.
Publisher
Cold Spring Harbor Laboratory