A Novel PHOX/CD38/MCOLN1/TFEB Axis Important For Macrophage Activation During Bacterial Phagocytosis

Author:

Najibi Mehran,Moreau Joseph A.,Honwad Havisha H.,Irazoqui Javier E.ORCID

Abstract

AbstractMacrophages are a key and heterogenous class of phagocytic cells of the innate immune system, which act as sentinels in peripheral tissues and are mobilized during infection. Macrophage activation in the presence of bacterial cells and molecules entails specific and complex programs of gene expression. How such triggers elicit the gene expression programs is incompletely understood. We previously discovered that transcription factor TFEB is a key contributor to macrophage activation during bacterial phagocytosis. However, the mechanism linking phagocytosis of bacterial cells to TFEB activation remained unknown. In this article, we describe a previously unknown pathway that links phagocytosis with the activation of TFEB and related transcription factor TFE3 in macrophages. We find that phagocytosis of bacterial cells causes an NADPH oxidase (PHOX)-dependent oxidative burst, which activates enzyme CD38 and generates NAADP in the maturing phagosome. Phago-lysosome fusion brings Ca2+ channel TRPML1/MCOLN1 in contact with NAADP, causing Ca2+ efflux from the lysosome, calcineurin activation, and TFEB nuclear import. This drives TFEB-dependent expression of important pro-inflammatory cytokines, such as IL-1α, IL-1β, and IL-6. Thus, our findings reveal that TFEB activation is a key regulatory event for the activation of macrophages. These findings have important implications for infections, cancer, obesity, and atherosclerosis.

Publisher

Cold Spring Harbor Laboratory

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3