Improving personalized prediction of cancer prognoses with clonal evolution models

Author:

Tao Yifeng,Rajaraman Ashok,Cui Xiaoyue,Cui Ziyi,Eaton Jesse,Kim Hannah,Ma JianORCID,Schwartz Russell

Abstract

AbstractCancer occurs via an accumulation of somatic genomic alterations in a process of clonal evolution. There has been intensive study of potential causal mutations driving cancer development and progression. However, much recent evidence suggests that tumor evolution is normally driven by a variety of mechanisms of somatic hypermutability, known as mutator phenotypes, which act in different combinations or degrees in different cancers. Here we explore the question of how and to which degree different mutator phenotypes act in a cancer predict its future progression. We develop a computational paradigm using evolutionary tree inference (tumor phylogeny) algorithms to derive features quantifying single-tumor mutational preferences, followed by a machine learning frame-work to identify key features predictive of progression. We build phylogenies tracing the evolution of subclones of cells in tumor tissues using a variety of somatic genomic alterations, including single nucleotide variations, copy number alterations, and structural variations. We demonstrate that mutation preference features derived from the phylogenies are predictive of clinical outcomes of cancer progression – overall survival and disease-free survival – based on the analyses on breast invasive carcinoma, lung adenocarcinoma, and lung squamous cell carcinoma. We further show that mutational phenotypes have predictive power even after accounting for traditional clinical and driver-centric predictors of progression. These results confirm the power of mutational phenotypes as an independent class of predictive biomarkers and suggest a strategy for enhancing the predictive power of conventional clinical or driver-centric genomic features.

Publisher

Cold Spring Harbor Laboratory

Reference79 articles.

1. The Clonal Evolution of Tumor Cell Populations

2. A mutator phenotype in cancer;Cancer Research,2001

3. Identification of neutral tumor evolution across cancer types

4. Tumor heterogeneity: causes and consequences;Biochimica et Biophysica Acta (BBA)-Reviews on Cancer,2010

5. Clonal evolution in cancer

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3