High-density super-resolution microscopy with an incoherent light source and a conventional epifluorescence microscope setup

Author:

Prakash KirtiORCID

Abstract

We report that single-molecule superresolution microscopy can be achieved with a conventional epifluorescence microscope setup and a Mercury arc lamp. The configuration termed as Omnipresent Localisation Microscope (OLM), is an extension of Single Molecule Localisation Microscopy (SMLM) techniques and allows single molecules to be switched on and off (’blinking’), detected and localised. The use of a short burst of deep blue excitation can be further used to reactivate the blinking, once the blinking process has slowed or stopped. A resolution of 90 nm is achieved on test specimens (mouse and amphibian meiotic chromosomes). Finally, for the first time, we demonstrate that STED and OLM can be performed on the same biological sample using a simple imaging buffer. It is hoped that such a correlative imaging will provide a basis for a further enhanced resolution.Scope of the findingsDespite ten years of development, superresolution microscopy is still limited to relatively few microscopy and optics groups. This is mainly due to the significant cost of the superresolution microscopes which require high-quality lasers, high NA objective lens, a very sensitive camera, a highly precise microscope stage, and a complex post-acquisition data reconstruction and analysis. We present results that demonstrate the possibility to obtain nanoscale resolution images using a conventional microscope and an incoherent light source. We show an easyto-follow protocol that every biologist can implement in the laboratory. We hope that this finding will help any scientist to generate high-density super-resolution images even with limited budget. Lastly, the new photophysical observations reported here will pave the way for more in-depth investigations on excitation, photobleaching and photoactivation of a fluorophore.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3