Evolutionary history of the porpoises (Phocoenidae) across the speciation continuum: a mitogenome phylogeographic perspective

Author:

Chehida Yacine BenORCID,Thumloup Julie,Schumacher Cassie,Harkins Timothy,Aguilar AlexORCID,Borrell AsunciónORCID,Ferreira MarisaORCID,Rojas-Bracho Lorenzo,Roberston Kelly M.,Taylor Barbara L.,Víkingsson Gísli A.ORCID,Weyna Arthur,Romiguier Jonathan,Morin Phillip A.ORCID,Fontaine Michael C.ORCID

Abstract

AbstractHistorical changes affecting food resources are a major driver of cetacean evolution. Small cetaceans like porpoises (Phocoenidae) are among the most metabolically challenged marine mammals and are particularly sensitive to changes in their food resources. The seven species of this family inhabit mostly temperate waters and constitute a textbook example of antitropical distribution. Yet, their evolutionary history remains poorly known despite major conservation issues threatening the survival of some porpoises (e.g., vaquita and Yangzte finless porpoises). Here, we reconstructed their evolutionary history across the speciation continuum, from intraspecific subdivisions to species divergence. Phylogenetic analyses of 63 mitochondrial genomes suggest that, like other toothed whales, porpoises radiated during the Pliocene in response to deep environmental changes. However, all intra-specific phylogeographic patterns were shaped during the Quaternary Glaciations. We observed analogous evolutionary patterns in both hemispheres associated with convergent adaptations to coastalversusoceanic environments. This result suggests that the mechanism(s) driving species diversification in the relatively well-known species from the northern hemisphere may apply also to the poorly-known southern species. In contrast to previous studies, we showed that the spectacled and Burmeister’s porpoises share a more recent common ancestor than with the vaquita that diverged from southern species during the Pliocene. The low genetic diversity observed in the vaquita carried signatures of a very low population size throughout at least the last 5,000 years, leaving one single relict mitochondrial lineage. Finally, we observed unreported subspecies level divergence within Dall’s, spectacled and Pacific harbor porpoises, suggesting a richer evolutionary history than previously suspected. These results provide a new perspective on the mechanism driving the adaptation and speciation processes involved in the diversification of cetacean species. This knowledge can illuminate their demographic trends and provide an evolutionary framework for their conservation.

Publisher

Cold Spring Harbor Laboratory

Reference94 articles.

1. Allendorf, F.W. , Luikart, G.H. , Aitken, S.N ., 2012. Conservation and the Genetics of Populations. John Wiley & Sons.

2. Andrews, S. , 2010. FastQC: a quality control tool for high throughput sequence data.

3. Mitogenomic analyses provide new insights into cetacean origin and evolution

4. EVOLUTION, TAXONOMY AND ANTITROPICAL DISTRIBUTIONS OF THE PORPOISES (PHOCOENIDAE, MAMMALIA)

5. Population Size Does Not Influence Mitochondrial Genetic Diversity in Animals

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3