Exome wide association study on Albuminuria identifies a novel rare variant inCUBNand additional genes, in 33985 Europeans with and without diabetes

Author:

Ahluwalia Tarunveer S.ORCID,Schulz Christina-AlexendraORCID,Waage JohannesORCID,Skaaby TeaORCID,Sandholm NiinaORCID,van Zuydam NatalieORCID,Charmet Romain,Bork-Jensen Jette,Almgren Peter,Thuesen Betina H.,Bedin Mathilda,Brandslund Ivans,Chrisitansen Cramer K.,Linneberg AllanORCID,Ahlqvist EmmaORCID,Groop Per-HenrikORCID,Hadjadj SamyORCID,Tregouet David-AlexandreORCID,Jørgensen Marit E.ORCID,Grarup NielsORCID,Simons MatiasORCID,Groop LeifORCID,Melander Marju-OrhoORCID,McCarthy Mark,Melander Olle,Rossing PeterORCID,Kilpelainen Tuomas O.ORCID,Hansen TorbenORCID

Abstract

AbstractIdentifying rare coding variants associated with albuminuria may open new avenues for preventing chronic kidney disease (CKD) and end-stage renal disease which are highly prevalent in patients with diabetes. Efforts to identify genetic susceptibility variants for albuminuria have so far been limited with the majority of studies focusing on common variants.We performed an exome-wide association study to identify coding variants in a two phase (discovery and replication) approach, totaling to 33,985 individuals of European ancestry (15,872 with and 18,113 without diabetes) and further testing in Greenlanders (n = 2,605). We identify a rare (MAF: 0.8%) missense (A1690V) variant inCUBN(rs141640975, β=0.27, p=1.3 × 10−11) associated with albuminuria as a continuous measure in the combined European meta-analyses. Presence of each rare allele of the variant was associated with a 6.4% increase in albuminuria. The rareCUBNvariant had 3 times stronger effect in individuals with diabetes compared to those without(pinteraction:5.4 × 10−4, βDM: 0.69, βnonDM:0.20) in the discovery meta-analyses. Geneaggregate tests based on rare and common variants identify three additional genes associated with albuminuria(HES1, CDC73, andGRM5)after multiple testing correction (P_bonferroni<2.7 × 10−6).The current study identifies a rare coding variant in theCUBNlocus and other potential genes associated with albuminuria in individuals with and without diabetes. These genes have been implicated in renal and cardiovascular dysfunction. These findings provide new insights into the genetic architecture of albuminuria and highlight novel target genes and pathways for prevention of diabetes-related kidney disease.Significance statementIncreased albuminuria is a key manifestation of major health burdens, including chronic kidney disease and/or cardiovascular disease. Although being partially heritable, there is a lack of knowledge on rare genetic variants that contribute to albuminuria. The current study describes the discovery and validation, of a new rare gene mutation (~1%) in theCUBNgene which associates with increased albuminuria. Its effect multiplies 3 folds among diabetes cases compared to non diabetic individuals. The study further uncovers 3 additional genes modulating albuminuria levels in humans. Thus the current study findings provide new insights into the genetic architecture of albuminuria and highlight novel genes/pathways for prevention of diabetes related kidney disease.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3