Strain-aware assembly of genomes from mixed samples using flow variation graphs

Author:

Baaijens Jasmijn A.,Stougie Leen,Schönhuth AlexanderORCID

Abstract

AbstractThe goal of strain-aware genome assembly is to reconstruct all individual haplotypes from a mixed sample at the strain level and to provide abundance estimates for the strains. Given that the use of a reference genome can introduce significant biases, de novo approaches are most suitable for this task. So far, reference-genome-independent assemblers have been shown to reconstruct haplotypes for mixed samples of limited complexity and genomes not exceeding 10000 bp in length.Here, we present VG-Flow, a de novo approach that enables full-length haplotype reconstruction from pre-assembled contigs of complex mixed samples. Our method increases contiguity of the input assembly and, at the same time, it performs haplotype abundance estimation. VG-Flow is the first approach to require polynomial, and not exponential runtime in terms of the underlying graphs. Since runtime increases only linearly in the length of the genomes in practice, it enables the reconstruction also of genomes that are longer by orders of magnitude, thereby establishing the first de novo solution to strain-aware full-length genome assembly applicable to bacterial sized genomes.VG-Flow is based on the flow variation graph as a novel concept that both captures all diversity present in the sample and enables to cast the central contig abundance estimation problem as a flow-like, polynomial time solvable optimization problem. As a consequence, we are in position to compute maximal-length haplotypes in terms of decomposing the resulting flow efficiently using a greedy algorithm, and obtain accurate frequency estimates for the reconstructed haplotypes through linear programming techniques.Benchmarking experiments show that our method outperforms state-of-the-art approaches on mixed samples from short genomes in terms of assembly accuracy as well as abundance estimation. Experiments on longer, bacterial sized genomes demonstrate that VG-Flow is the only current approach that can reconstruct full-length haplotypes from mixed samples at the strain level in human-affordable runtime.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3