Error-prone bypass of DNA lesions during lagging strand replication is a common source of germline and cancer mutations

Author:

Seplyarskiy Vladimir B.,Akkuratov Evgeny E.,Akkuratova Natalia V.,Andrianova Maria A.,Nikolaev Sergey I.,Bazykin Georgii A.,Adameyko Igor,Sunyaev Shamil R.

Abstract

Spontaneously occurring mutations are of great relevance in diverse fields including biochemistry, oncology, evolutionary biology, and human genetics. Studies in experimental systems have identified a multitude of mutational mechanisms including DNA replication infidelity as well as many forms of DNA damage followed by inefficient repair or replicative bypass. However, the relative contributions of these mechanisms to human germline mutations remain completely unknown. Here, based on the mutational asymmetry with respect to the direction of replication and transcription, we suggest that error-prone damage bypass on the lagging strand plays a major role in human mutagenesis. Asymmetry with respect to transcription is believed to be mediated by the action of transcription-coupled DNA repair (TC-NER). TC-NER selectively repairs DNA lesions on the transcribed strand; as a result, lesions on the non-transcribed strand are preferentially converted into mutations. In human polymorphism we detect a striking similarity between transcriptional asymmetry and asymmetry with respect to replication fork direction. This parallels the observation that damage-induced mutations in human cancers accumulate asymmetrically with respect to the direction of replication, suggesting that DNA lesions are asymmetrically resolved during replication. Re-analysis of XR-seq data, Damage-seq data and cancers with defective NER corroborate the preferential error-prone bypass of DNA lesions on the lagging strand. We experimentally demonstrate that replication delay greatly attenuates the mutagenic effect of UV-irradiation, in line with the key role of replication in conversion of DNA damage to mutations. We conservatively estimate that at least 10% of human germline mutations arise due to DNA damage rather than replication infidelity. The number of these damage-induced mutations is expected to scale with the number of replications and, consequently, paternal age.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3