The network of SARS-CoV-2—cancer molecular interactions and pathways

Author:

Erola PauORCID,Martin Richard M.ORCID,Gaunt Tom R.ORCID

Abstract

AbstractBackgroundRelatively little is known about the long-term impacts of SARS-CoV-2 biology, including whether it increases the risk of cancer. This study aims to identify the molecular interactions between COVID-19 infections and cancer processes.Materials and MethodsWe integrated recent data on SARS-CoV-2 – host protein interactions, risk factors for critical illness, known oncogenes, tumor suppressor genes and cancer drivers in EpiGraphDB, a database of disease biology and epidemiology. We used these data to reconstruct the network of molecular links between SARS-CoV-2 infections and cancer processes in various tissues expressing the angiotensin-converting enzyme 2 (ACE2) receptor. We applied community detection algorithms and Gene Set Enrichment Analysis (GSEA) to identify cancer-relevant pathways that may be perturbed by SARS-CoV-2 infection.ResultsIn lung tissue, the results showed that 4 oncogenes are potentially targeted by SARS-CoV-2, and 92 oncogenes interact with other human genes targeted by SARS-CoV-2. We found evidence of potential SARS-CoV-2 interactions with Wnt and hippo signaling pathways, telomere maintenance, DNA replication, protein ubiquitination and mRNA splicing. Some of these pathways were potentially affected in multiple tissues.ConclusionsThe long-term implications of SARS-CoV-2 infection are still unknown, but our results point to the potential impact of infection on pathways relevant to cancer affecting cell proliferation, development and survival, favoring DNA degradation, preventing the repair of damaging events and impeding the translation of RNA into working proteins. This highlights the need for further research to investigate whether such effects are transient or longer lasting. Our results are openly available in the EpiGraphDB platform at https://epigraphdb.org/covid-cancer and the repository https://github.com/MRCIEU/covid-cancer (https://doi.org/10.5281/zenodo.6391588).

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3