Abstract
AbstractDNA sequencing has led to the discovery of millions of mutations that change the encoded protein sequences, but the impact of nearly all of these mutations on protein function is unknown. We addressed this scarcity of functional data by developing Miro, a proteomic technology that uses mistranslation to introduce amino acid substitutions and biochemical assays to quantify functional differences of thousands of protein variants by mass spectrometry. We apply this technology to the proteome of yeast to reveal amino acid substitutions that impact protein structure, ligand binding, protein-protein interactions, protein post-translational modifications, and protein thermal stability. Adapting Miro to human cells will provide a means to efficiently accelerate our mechanistic interpretation of genomic mutations to predict disease risk.
Publisher
Cold Spring Harbor Laboratory
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献