A combined experimental-computational approach uncovers a role for the Golgi matrix protein Giantin in breast cancer progression

Author:

Ghannoum Salim,Fantini Damiano,Zahoor Muhammad,Reiterer Veronika,Phuyal Santosh,Netto Waldir Leoncio,Sørensen ØysteinORCID,Iyer Arvind,Sengupta Debarka,Prasmickaite Lina,Mælandsmo Gunhild Mari,Köhn-Luque Alvaro,Farhan Hesso

Abstract

AbstractFew studies so far have investigated the impact of different cell migration traits on tumor progression. To address this, we developed a mathematical model wherein cells migrate in two-dimensional space, divide, die or intravasate into the vasculature. Exploring a wide range of speed and persistence combinations, we find that tumor growth positively correlates with increasing speed and higher persistence. As a biologically relevant example, we focused on Golgi fragmentation induced by depletion of Giantin, a Golgi matrix protein, the downregulation of which correlates with poor patient survival. Applying the migration and invasion traits of Giantin depleted cells to our mathematical model, we predict that loss of Giantin increases the number of intravasating cells. This prediction was validated, by showing that circulating tumor cells express significantly less Giantin than primary tumor cells. Altogether, our computational model identifies cell migration traits that regulate tumor progression and uncovers a role of Giantin in breast cancer progression.

Publisher

Cold Spring Harbor Laboratory

Reference67 articles.

1. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries

2. Breast cancer: insights into risk factors, pathogenesis, diagnosis and management;Journal of Cancer Research and Treatment,2015

3. Breast cancer metastasis;Cancer Genomics-Proteomics,2012

4. Breast cancer as a systemic disease: a view of metastasis

5. Models of epithelial–mesenchymal transition;Drug Discovery Today: Disease Models,2005

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3