Delayed booster dosing improves human antigen-specific Ig and B cell responses to the RH5.1/AS01B malaria vaccine

Author:

Nielsen CMORCID,Barrett JR,Davis C,Fallon JK,Goh C,Michell AR,Griffin C,Kwok AORCID,Loos CORCID,Darko S,Laboune F,Silk SE,Tekman MORCID,Francica JR,Ransier A,Payne RO,Minassian AMORCID,Lauffenburger DA,Seder RA,Douek DC,Alter GORCID,Draper SJORCID

Abstract

AbstractBackgroundAntibodies are crucial for vaccine-mediated protection against many pathogens. Modifications to vaccine delivery that increase antibody magnitude, longevity, and/or quality are therefore of great interest for maximising efficacy. We have previously shown that a delayed fractional (DFx) dosing schedule (0-1-6mo) – using AS01B-adjuvanted RH5.1 malaria antigen – substantially improves serum IgG durability as compared to monthly dosing (0-1-2mo; NCT02927145). However, the underlying mechanism and whether there are wider immunological changes with DFx dosing was unclear.MethodsImmunokinetics of PfRH5-specific Ig across multiple isotypes were compared between DFx and monthly regimen vaccinees. Peak responses were characterised in-depth with a systems serology platform including biophysical and functional profiling. Computational modelling was used to define the humoral feature set associated with DFx dosing. PfRH5-specific B cells were quantified by flow cytometry and sorted for single cell RNA sequencing (scRNA-seq). Differential gene expression between DFx and monthly dosing regimens was explored with Seurat, DESeq2 and gene set enrichment analysis.ResultsDFx dosing increases the frequency of circulating PfRH5-specific B cells and longevity of PfRH5-specific IgG1, as well as other isotypes and subclasses. At the peak antibody response, DFx dosing was distinguished by a systems serology feature set comprising increased FcRn-binding, IgG avidity, and proportion of G2B and G2S2F IgG Fc glycans, alongside decreased IgG3, antibody-dependent complement deposition, and proportion of G1S1F IgG Fc glycan. At the same time point, scRNA-seq of PfRH5-specific B cells revealed enriched plasma cell and Ig / protein export signals in the monthly dosing group as compared to DFx vaccinees.ConclusionsDFx dosing of the RH5.1/AS01B vaccine had a profound impact on the humoral response. Our data suggest plausible mechanisms relating to improved FcRn-binding (known to improve Ig longevity) and a potential shift from short-lived to long-lived plasma cells. Recent reports of the positive impact of delayed boosting on SARS-CoV-2 vaccine immunogenicity highlight the broad relevance of these data.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3