Goldilocks calcium and the mitochondrial respiratory chain: too much, too little, just right

Author:

Vilas-Boas Eloisa A.,Cabral-Costa João VictorORCID,Ramos Vitor M.,Caldeira da Silva Camille C.,Kowaltowski Alicia J.ORCID

Abstract

AbstractCalcium (Ca2+) is a key regulator in diverse intracellular signaling pathways, and has long been implicated in metabolic control and mitochondrial function. Mitochondria can actively take up large amounts of Ca2+, thereby acting as important intracellular Ca2+buffers and affecting cytosolic Ca2+transients. Excessive mitochondrial matrix Ca2+is known to be deleterious due to opening of the mitochondrial permeability transition pore (mPTP) and consequent membrane potential dissipation, leading to mitochondrial swelling, rupture, and cell death. Moderate Ca2+within the organelle, on the other hand, can directly or indirectly activate mitochondrial matrix enzymes, possibly impacting on ATP production. Here, we aimed to determine in a quantitative manner if extra or intramitochondrial Ca2+modulate oxidative phosphorylation in mouse liver mitochondria and intact hepatocyte cell lines. To do so, we monitored the effects of more modest versus supra-physiological increases in cytosolic and mitochondrial Ca2+on oxygen consumption rates. Isolated mitochondria present increased respiratory control ratios (a measure of oxidative phosphorylation efficiency) when incubated with low (2.4 ± 0.6 μM) and medium (22.0 ± 2.4 μM) Ca2+concentrations in the presence of complex I-linked substrates pyruvate plus malate and α-ketoglutarate, respectively, but not complex II-linked succinate. In intact cells, both low and high cytosolic Ca2+led to decreased respiratory rates, while ideal rates were present under physiological conditions. High Ca2+decreased mitochondrial respiration in a substrate-dependent manner, mediated by mPTP. Overall, our results uncover a Goldilocks effect of Ca2+on liver mitochondria, with specific “just right” concentrations that activate oxidative phosphorylation.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3