Immotile cilia of the mouse node sense a fluid flow–induced mechanical force for left-right symmetry breaking

Author:

Katoh Takanobu A.ORCID,Omori ToshihiroORCID,Mizuno KatsutoshiORCID,Sai Xiaorei,Minegishi KatsuraORCID,Ikawa Yayoi,Nishimura Hiromi,Itabashi Takeshi,Kajikawa Eriko,Hiver Sylvain,Iwane Atsuko H.ORCID,Ishikawa TakujiORCID,Okada YasushiORCID,Nishizaka Takayuki,Hamada HiroshiORCID

Abstract

Immotile cilia of crown cells at the node of mouse embryos are required for sensing of a leftward fluid flow1 that gives rise to the breaking of left-right (L-R) symmetry2. The flow-sensing mechanism has long remained elusive, however, with both mechanosensing and chemosensing models having been proposed1, 3–5. Here we show that immotile cilia at the mouse node respond to mechanical force. In the presence of a leftward flow, immotile cilia on the left side of the node bend toward the ventral side whereas those on the right side bend toward the dorsal side. Application of mechanical stimuli to immotile cilia along the dorsoventral axis by optical tweezers induced Ca2+ transients and degradation of Dand5 mRNA—the first known L-R asymmetric molecular events—in the targeted cells. The Pkd2 channel protein was found to be preferentially localized to the dorsal side of immotile cilia on both left and right sides of the node, and the observed induction of Ca2+ transients preferentially by mechanical stimuli directed toward the ventral side could explain the differential response of immotile cilia to the directional flow. Our results thus suggest that immotile cilia at the node sense the direction of fluid flow in a manner dependent on a flow-generated mechanical force.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3