DiffBrainNet: differential analyses add new insights into the response to glucocorticoids at the level of genes, networks and brain regions

Author:

Gerstner NathalieORCID,Krontira Anthi C.ORCID,Cruceanu CristianaORCID,Roeh SimoneORCID,Pütz BennoORCID,Sauer Susann,Rex-Haffner Monika,Schmidt Mathias V.,Binder Elisabeth B.ORCID,Knauer-Arloth JanineORCID

Abstract

AbstractGenome-wide gene expression analyses are invaluable tools for increasing our knowledge of biological and disease processes, allowing a hypothesis-free comparison of gene expression profiles across experimental groups, tissues and cell types. Traditionally, transcriptomic data analysis has focused on gene-level effects found by differential expression. In recent years, network analysis has emerged as an important additional level of investigation, providing information on molecular connectivity, especially for diseases associated with a large number of linked effects of smaller magnitude, like neuropsychiatric disorders and their risk factors, including stress. In this manuscript, we describe how combined differential expression and prior-knowledge-based differential network analysis can be used to explore complex datasets. As an example, we analyze the transcriptional responses following administration of the glucocorticoid/stress hormone receptor agonist dexamethasone in C57Bl/6 mice, in 8 brain regions important for stress processing: the prefrontal cortex, the amygdala, the paraventricular nucleus of the hypothalamus, the cerebellar cortex, and sub regions of the hippocampus: the dorsal and ventral Cornu Ammonis 1, the dorsal and ventral dentate gyrus. By applying a combination of differential network- and differential expression-analyses, we find that these explain distinct but complementary aspects and biological mechanisms of the responses to the stimulus. In addition, network analysis identifies new differentially connected partners of important genes and can be used to generate hypotheses on specific molecular pathways affected. With this work, we provide an analysis framework and a publicly available resource for the study of the transcriptional landscape of the mouse brain: DiffBrainNet (http://diffbrainnet.psych.mpg.de), which can identify molecular pathways important for basic functioning and response to glucocorticoids in a brain-region specific manner.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3