Characterization of cell-fate decision landscapes by estimating transcription factor dynamics

Author:

Jiménez Sara,Schreiber Valérie,Mercier Reuben,Gradwohl Gérard,Molina NachoORCID

Abstract

AbstractModulation of gene expression during differentiation by transcription factors promotes cell diversity. Despite their role in cell fate decisions, no experimental assays estimate their regulatory activity in a high-throughput manner and at the single-cell resolution. We present FateCompass for identifying lineage-specific transcription factors across differentiation. It uses single-cell transcriptomics data to infer differentiation trajectories and transcription factor activities. We combined a probabilistic framework with RNA velocities or a differentiation potential to estimate transition probabilities and perform stochastic simulations. Also, we learned transcription factor activities using a linear model of gene regulation. Considering dynamic changes and correlations, we identified lineage-specific regulators. We applied FateCompass to an islet cell formation dataset from the mouse embryo, and we found known and novel potential cell-type drivers. Also, when applied to a differentiation protocol dataset towards beta-like cells, we pinpointed undescribed regulators of an off-target population, which were experimentally validated. Thus, as a framework for identifying lineage-specific transcription factors, FateCompass could have implications on hypothesis generation to increase the understanding of the gene regulatory networks driving cell fate choices.HighlightsWe developed FateCompass, a flexible pipeline to estimate transcription factor activities during cell-fate decision using single-cell RNA seq data.FateCompass outlines gene expression stochastic trajectories by infusing the direction of differentiation using RNA velocity or a differentiation potential when RNA velocity fails.Transcription factor dynamics allow the identification of time-specific regulatory interactions.FateCompass predictions revealed known and novel cell-subtype-specific regulators of mouse pancreatic islet cell development.Differential motif analysis predicts lineage-specific regulators of stem cell-derived human β- cells and sheds light on the cellular heterogeneity of β-cell differentiation protocols.Experimental validation supports the proposed GRN controlling SC-EC differentiation predicted by FateCompass.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3