Multi-omics analyses cannot identify true-positive novel associations from underpowered genome-wide association studies of four brain-related traits

Author:

Baranger David A.A.ORCID,Hatoum Alexander S.ORCID,Polimanti RenatoORCID,Gelernter JoelORCID,Edenberg Howard J.ORCID,Bogdan RyanORCID,Agrawal ArpanaORCID

Abstract

AbstractBackgroundThe integration of multi-omics information (e.g., epigenetics and transcriptomics) can be useful for interpreting findings from genome-wide association studies (GWAS). It has additionally been suggested that multi-omics may aid in novel variant discovery, thus circumventing the need to increase GWAS sample sizes. We tested whether incorporating multi-omics information in earlier and smaller sized GWAS boosts true-positive discovery of genes that were later revealed by larger GWAS of the same/similar traits.MethodsWe applied ten different analytic approaches to integrating multi-omics data from twelve sources (e.g., Genotype-Tissue Expression project) to test whether earlier and smaller GWAS of 4 brain-related traits (i.e., alcohol use disorder/problematic alcohol use [AUD/PAU], major depression [MDD], schizophrenia [SCZ], and intracranial volume [ICV]) could detect genes that were revealed by a later and larger GWAS.ResultsMulti-omics data did not reliably identify novel genes in earlier less powered GWAS (PPV<0.2; 80% false-positive associations). Machine learning predictions marginally increased the number of identified novel genes, correctly identifying 1-8 additional genes, but only for well-powered early GWAS of highly heritable traits (i.e., ICV and SCZ). Multi-omics, particularly positional mapping (i.e., fastBAT, MAGMA, and H-MAGMA), was useful for prioritizing genes within genome-wide significant loci (PPVs = 0.5 – 1.0).ConclusionsAlthough the integration of multi-omics information, particularly when multiple methods agree, helps prioritize GWAS findings and translate them into information about disease biology, it does not substantively increase novel gene discovery in brain-related GWAS. To increase power for discovery of novel genes and loci, increasing sample size is a requirement.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3