Covert attention to obstacles biases zebrafish escape direction

Author:

Zwaka Hanna,McGinnis Olivia J,Pflitsch Paula,Prabha Srishti,Mansinghka Vikash,Engert FlorianORCID,Bolton Andrew DORCID

Abstract

AbstractTo study the evolutionary origins of object perception, we investigated whether a primitive vertebrate, the larval zebrafish, is sensitive to the presence of obstacles. The zebrafish, which has become a useful model to study brain-wide circuit dynamics, executes fast escape swims when in danger of predation. We posited that collisions with solid objects during escape would be maladaptive to the zebrafish, and therefore the direction of escape swims should be informed by the locations of barriers. To answer this question, we developed a novel closed-loop high-speed imaging rig outfitted with barriers of various qualities. Using this system, we show that when larval zebrafish escape in response to a non-directional vibrational stimulus, they use visual scene information to avoid collisions with obstacles. Our study demonstrates that fish compute absolute distance to obstacles, as distant barriers outside of collision range elicit less bias than nearby collidable barriers that occupy the same visual field. The computation of barrier features is covert, as the fish’s reaction to barriers during routine swimming does not predict that they will avoid barriers when escaping. Finally, through two-photon laser ablations, we suggest the presence of an excitatory input from the visual system to Mauthner cells in the brainstem escape network that is responsible for escape direction bias. We propose that zebrafish construct “object solidity” via an integrative visual computation that is more complex than retinal occupancy alone, suggesting a primitive understanding of object features and possibly the origins of a structured model of the physical world.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3