Vimentin Intermediate Filaments Can Enhance or Abate Active Cellular Forces in a Microenvironmental Stiffness-Dependent Manner

Author:

Alisafaei FaridORCID,Mandal KalpanaORCID,Swoger Maxx,Yang Haiqian,Guo Ming,Janmey Paul A,Patteson Alison EORCID,Shenoy Vivek B.

Abstract

AbstractThe mechanical properties of cells are largely determined by the cytoskeleton, which is a complex network of interconnected biopolymers consisting of actin filaments, microtubules, and intermediate filaments. While disruption of the actin filament and microtubule networks is known to decrease and increase cell-generated forces, respectively, the effect of intermediate filaments on cellular forces is not well understood. Using a combination of theoretical modeling and experiments, we show that disruption of vimentin intermediate filaments can either increase or decrease cell-generated forces, depending on microenvironment stiffness, reconciling seemingly opposite results in the literature. On the one hand, vimentin is involved in the transmission of actomyosin-based tensile forces to the matrix and therefore enhances traction forces. On the other hand, vimentin reinforces microtubules and their stability under compression, thus promoting the role of microtubules in suppressing cellular traction forces. We show that the competition between these two opposing effects of vimentin is regulated by the microenvironment stiffness. For low matrix stiffness, the force-transmitting role of vimentin dominates over their microtubule-reinforcing role and therefore vimentin increases traction forces. At high matrix stiffness, vimentin decreases traction forces as the microtubule-reinforcing role of vimentin becomes more important with increasing matrix stiffness. Our theory reconciles seemingly disparate experimental observations on the role of vimentin in active cellular forces and provides a unified description of stiffness-dependent chemo-mechanical regulation of cell contractility by vimentin.SignificanceVimentin is a marker of the epithelial to mesenchymal transition which takes place during important biological processes including embryogenesis, metastasis, tumorigenesis, fibrosis, and wound healing. While the roles of the actin and microtubule networks in the transmission of cellular forces to the extracellular matrix are known, it is not clear how vimentin intermediate filaments impact cellular forces. Here, we show that vimentin impacts cellular forces in a matrix stiffness-dependent manner. Disruption of vimentin in cells on soft matrices reduces cellular forces, while it increases cellular forces in cells on stiff matrices. Given that cellular forces are central to both physiological and pathological processes, our study has broad implications for understanding the effect of vimentin on cellular forces in different microenvironments.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3