Reducing CRISPR dark matter reveals a strong association between the bacterial membranome and CRISPR-Cas systems

Author:

Rubio AlejandroORCID,Sprang MaximilianORCID,Garzón AndrésORCID,Pachón-Ibáñez Maria EugeniaORCID,Pachón JerónimoORCID,Andrade-Navarro Miguel A.ORCID,Pérez-Pulido Antonio J.ORCID

Abstract

AbstractAntimicrobial resistance is widely recognized as a serious global public health problem. To combat this threat, a thorough understanding of bacterial genomes is necessary. The current wide availability of bacterial genomes provides us with an in-depth understanding of the great variability of dispensable genes and their relationship with antimicrobials. Some of these accessory genes are those involved in CRISPR-Cas systems, which are acquired immunity systems that are present in part of bacterial genomes. They prevent viral infections through small DNA fragments called spacers. But the vast majority of these spacers have not yet been associated with the virus they recognize, and this has been named CRISPR dark matter. By analyzing the spacers of tens of thousands of genomes from six bacterial species highly resistant to antibiotics, we have been able to reduce the CRISPR dark matter from 80-90% to as low as 15% in some of the species. In addition, we have observed that, when a genome presents CRISPR-Cas systems, this is accompanied by particular collections of membrane proteins. Our results suggest that when a bacterium presents membrane proteins that make it compete better in its environment, and these proteins are in turn receptors for specific phages, it would be forced to acquire CRISPR-Cas immunity systems to avoid infection by these phages.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3