In vitro longitudinal lumbar spinal cord preparations to study sensory and recurrent motor microcircuits of juvenile mice

Author:

Özyurt Mustafa GörkemORCID,Ojeda-Alonso Julia,Beato MarcoORCID,Nascimento FilipeORCID

Abstract

AbstractIn vitro spinal cord preparations have been extensively used to study microcircuits involved in the control of movement. By allowing precise control of experimental conditions coupled with state-of-the-art genetics, imaging and electrophysiological techniques, isolated spinal cords from mice have been an essential tool in detailing the identity, connectivity and function of spinal networks. The majority of the research has arisen from in vitro spinal cords of neonatal mice, which are still undergoing important postnatal maturation. Studies from adults have been attempted in transverse slices, however, these have been quite challenging due to the poor motoneuron accessibility and viability, as well as to the extensive damage to the motoneuron dendritic trees. In this work, we describe two types of coronal spinal cord preparations with either the ventral or the dorsal horn ablated, obtained from mice of different postnatal ages, spanning from pre-weaned to one month old. These semiintact preparations allow recordings of sensory-afferent and motor-efferent responses from lumbar motoneurons using whole cell patch-clamp electrophysiology. We provide details of the slicing procedure and discuss the feasibility of whole-cell recordings. The in vitro dorsal and ventral horn-ablated spinal cord preparations described here are an useful tool to study spinal motor circuits in young mice that have reached the adult stages of locomotor development.New & NoteworthyIn the past 20 years, most of the research into the mammalian spinal circuitry has been limited to in vitro preparations from embryonic and neonatal mice. We describe two in vitro longitudinal lumbar spinal cord preparations from juvenile mice, that allow the study of motoneuron properties and respective afferent or efferent spinal circuits through whole-cell patch-clamp. These preparations will be useful to those interested in the study of microcircuits at mature stages of motor development.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3