Abstract
AbstractClassifying habitat patches as sources or sinks and determining metapopulation persistence requires coupling connectivity between habitat patches with local demographic rates. In this paper we show how next-generation matrices, originally popularized in epidemiology to calculate new infections after one generation, can be used in an ecological context to couple connectivity with local demography to calculate sources and sinks as well as metapopulation persistence in marine metapopulations. To demonstrate the utility of the method, we construct a next-generation matrix for a network of sea lice populations on salmon farms in the Broughton Archipelago, BC, an intensive salmon farming region on the west coast of Canada where certain salmon farms are currently being removed under an agreement between local First Nations and the provincial government. We identify the salmon farms which are acting as the largest sources of sea lice and show that in this region the most productive sea lice populations are also the most connected. We find that the farms which are the largest sources of sea lice have not yet been removed from the Broughton Archipelago, and that warming temperatures could lead to increased sea louse growth.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献