Dynamic chromatin organization and regulatory interactions in human endothelial cell differentiation

Author:

Alavattam Kris GORCID,Mitzelfelt Katie AORCID,Bonora GiancarloORCID,Fields Paul A,Yang Xiulan,Chiu Han Sheng,Pabon Lil,Bertero AlessandroORCID,Palpant Nathan JORCID,Noble William SORCID,Murry Charles EORCID

Abstract

AbstractBackgroundVascular endothelial cells are a mesoderm-derived lineage with many essential functions, including angiogenesis and coagulation. However, the gene regulatory mechanisms that underpin endothelial specialization are largely unknown, as are the roles of 3D chromatin organization in regulating endothelial cell transcription.MethodsTo investigate the relationships between 3D chromatin organization and gene expression in endothelial cell differentiation, we induced endothelial cell differentiation from human pluripotent stem cells and performed Hi-C and RNA-seq assays at specific timepoints in differentiation.ResultsOur analyses reveal that long-range intrachromosomal contacts increase over the course of endothelial cell differentiation, as do genomic compartment transitions between active and inactive states. These compartmental states are tightly associated with endothelial transcription. Dynamic topologically associating domain (TAD) boundaries strengthen and converge on an endothelial cell state, and nascent TAD boundaries are linked to the expression of genes that support endothelial cell specification. Relatedly, chromatin pairwise point interactions (DNA loops) increase in frequency during differentiation and are linked to the expression of genes with essential roles in vascular biology, including MECOM, TFPI, and KDR. To identify forms of regulation specific to endothelial cell differentiation, we compared the functional chromatin dynamics of endothelial cells with those of developing cardiomyocytes. Cardiomyocytes exhibit greater long-range cis interactions than endothelial cells, whereas endothelial cells have increased local intra-TAD interactions and much more abundant pairwise point interactions.ConclusionsGenome topology changes dynamically during endothelial differentiation, including acquisition of long-range cis interactions and new TAD boundaries, interconversion of hetero- and euchromatin, and formation of DNA loops. These chromatin dynamics guide transcription in the development of endothelial cells and promote the divergence of endothelial cells from related cell types such as cardiomyocytes.

Publisher

Cold Spring Harbor Laboratory

Reference78 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3