Computational Analysis of Effects of Clot Length on Acute Ischemic Stroke Recanalization under Different Cyclic Aspiration Loading Conditions

Author:

Patki Priyanka,Simon Scott,Manning Keefe B.,Costanzo Francesco

Abstract

AbstractAcute ischemic stroke, the second leading cause of death worldwide, results from occlusion of a cerebral artery by a blood clot. Application of cyclic aspiration using an aspiration catheter is a current therapy for the removal of lodged clots. In this study, we perform finite element simulations to analyze deformation of long clots, having length to radius ratio of 2 to 10, which corresponds to clot-length of 2.85–14.25 mm, under peak-to-peak cyclic aspiration pressures of 10 to 50mmmHg, and frequencies of 0.5, 1 and 2 Hz. Our computational system comprises of a nonlinear viscoelastic solid clot, a hyperelastic artery, and a nonlinear viscoelastic cohesive zone, the latter modeling the clot–artery interface. We observe that clots having length-to-radius ratio approximately greater than two separate from the inner arterial surface somewhere between the axial and distal ends, irrespective of the cyclic aspiration loading conditions. The stress distribution within the clot shows large tensile stresses in the clot interior, indicating the possibility of simultaneous fragmentation of the clot. Thus, this study shows us the various failure mechanisms simultaneously present in the clot during cyclic aspiration. Similarly, the stress distribution within the artery implies a possibility of endothelial damage to the arterial wall near the end where the aspiration pressure is applied. This framework provides a foundation for further investigation to clot fracture and adhesion characterization.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3