Sorting single T cells based on secreted cytokines and surface markers using hydrogel nanovials

Author:

Koo DoyeonORCID,Dimatteo Robert,Lee Sohyung,de Rutte Joseph,Di Carlo Dino

Abstract

AbstractImmune cell function is intrinsically linked to secreted factors which enable cells to communicate with neighboring or distant cells to coordinate a response. The ability to secrete cytokines also can help define the population of cells with therapeutic potential in emerging cell therapies, such as chimeric antigen receptor (CAR)-T cell therapies. Polyfunctional cells that can secrete more than one cytokine have been found to play an outsized role in therapeutic efficacy. While there are a variety of techniques to analyze cellular secretions from individual polyfunctional cells, there are no widely-available approaches to sort viable cells based on this phenotype. Here, we apply lab on a particle technology to the analysis and sorting of T cells based on a combination of secreted factors, interferon gamma (IFN-γ), tumor necrosis factor alpha (TNF-α) and interleukin 2 (IL-2) and surface markers (CD8+ and CD4+). Cells are selectively loaded into the antibody-functionalized cavity of micro-hydrogel particles, called nanovials, where secreted cytokines are captured and fluorescently stained. By leveraging standard fluorescence activated cell sorters and using fluorescence pulse area/height information we can distinguish between fluorescence signals on the nanovial cavities and on cells, and are able to process greater than 1 million nanovials in one hour of sorting. The frequency of multi-cytokine secreting cells was correlated with surface marker expression, and biased towards CD4+ T cells. CD8+ cells that secreted more than one cytokine, were biased towards IFN-γ and TNF-α with fewer CD8+ cells secreting IL-2. The majority of cells with a polyfunctional phenotype that were sorted remained viable and regrew following sorting. This nanovial cytokine secretion assay can be applied to sort antigen-specific T cells or CAR-T cells based on their functional engagement with cognate antigens or peptide-major histocompatibility complexs (MHCs), enabling discovery of functional CARs or T cell receptors and deeper investigation into the molecular underpinnings of single T cell function.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3