Data Driven Control of Vagus Nerve Stimulation for the Cardiac System

Author:

Branen Andrew,Yao Yuyu,Kothare Mayuresh,Mahmoudi Babak,Kumar Gautam

Abstract

1AbstractVagus nerve stimulation is an emerging therapy that seeks to offset pathological conditions by electrically stimulating the vagus nerve through cuff electrodes, where an electrical pulse is defined by several parameters such as pulse amplitude, pulse width, and pulse frequency. This electroceutical therapy has been approved for epilepsy, and treatment resistant depression. Currently, vagus nerve stimulation is under investigation for the treatment of heart failure, heart arrhythmia, hypertension, and gastric motility disorders. Through several clinical trials that sought to assess vagus nerve stimulation for the treatment of heart failure, stimulation parameters were determined heuristically and the results were left inconclusive, which has led to the suggestion of using a closed-loop approach to optimize the stimulation parameters. A recent investigation has demonstrated highly specific control of cardiac physiology by selectively activating different fibers in the vagus nerve. When multiple locations and multiple stimulation parameters are considered for optimization, the design of closed-loop control becomes considerably more challenging. To address this challenge, we investigated a data-driven control scheme for both modeling and controlling the rat cardiac system. Using an existing in silico physiological model of a rat heart to generate synthetic input-output data, we trained a long short-term memory network (LSTM) to map the effect of stimulation on the heart rate and the blood pressure. The trained LSTM was utilized in a model predictive control framework to optimize the vagus nerve stimulation parameters for set point tracking of the heart rate and the blood pressure in closed-loop simulations. Additionally, we altered the underlying in silico physiological model to consider intra-patient variability, and diseased dynamics from increased sympathetic tone in designing closed-loop VNS strategies. Throughout the different simulation scenarios, we leveraged the design of the controller to demonstrate alternative clinical objectives. Our results show the controller can optimize stimulation parameters to achieve set-point tracking with nominal offset while remaining computationally efficient. Furthermore, we show a controller formulation that compensates for mismatch due to intra-patient variabilty, and diseased dynamics. This study demonstrates the first application and a proof-of-concept for using a purely data-driven approach for the optimization of vagus nerve stimulation parameters in closed-loop control of the cardiac system.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3