GenMPI: Cluster Scalable Variant Calling for Short/Long Reads Sequencing Data

Author:

Ahmad Tanveer,Schuchart Joseph,Ars Zaid Al,Niethammer Christoph,Gracia José,Hofstee H. Peter

Abstract

ABSTRACTRapid technological advancements in sequencing technologies allow producing cost effective and high volume sequencing data. Processing this data for real-time clinical diagnosis is potentially time-consuming if done on a single computing node. This work presents a complete variant calling workflow, implemented using the Message Passing Interface (MPI) to leverage the benefits of high bandwidth interconnects. This solution (GenMPI) is portable and flexible, meaning it can be deployed to any private or public cluster/cloud infrastructure. Any alignment or variant calling application can be used with minimal adaptation. To achieve high performance, compressed input data can be streamed in parallel to alignment applications while uncompressed data can use internal file seek functionality to eliminate the bottleneck of streaming input data from a single node. Alignment output can be directly stored in multiple chromosome-specific SAM files or a single SAM file. After alignment, a distributed queue using MPI RMA (Remote Memory Access) atomic operations is created for sorting, indexing, marking of duplicates (if necessary) and variant calling applications. We ensure the accuracy of variants as compared to the original single node methods. We also show that for 300x coverage data, alignment scales almost linearly up to 64 nodes (8192 CPU cores). Overall, this work outperforms existing big data based workflows by a factor of two and is almost 20% faster than other MPI-based implementations for alignment without any extra memory overheads. Sorting, indexing, duplicate removal and variant calling is also scalable up to 8 nodes cluster. For pair-end short-reads (Illumina) data, we integrated the BWA-MEM aligner and three variant callers (GATK HaplotypeCaller, DeepVariant and Octopus), while for long-reads data, we integrated the Minimap2 aligner and three different variant callers (DeepVariant, DeepVariant with WhatsHap for phasing (PacBio) and Clair3 (ONT)). All codes and scripts are available at: https://github.com/abs-tudelft/gen-mpi

Publisher

Cold Spring Harbor Laboratory

Reference43 articles.

1. Tearing down the walls: FDA approves next generation sequencing (NGS) assays for actionable cancer genomic aberrations

2. Apache (2019a). Apache hadoop [accessed: 2nd april 2019]

3. Apache (2019b). Apache spark: Lightning-fast unified analytics engine [accessed: 2nd april 2019]

4. of exome sequencing in fetal diagnostics—data and experiences from a tertiary center in denmark;Acta Obstetricia et Gynecologica Scandinavica,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3