A role for the circadian transcription factor NPAS2 in the progressive loss of non-rapid eye movement sleep and increased arousal during fentanyl withdrawal in male mice

Author:

Gamble Mackenzie C.,Chuan Byron,Gallego-Martin Teresa,Shelton Micah A.,Puig Stephanie,O’Donnell Christopher P.,Logan Ryan W.ORCID

Abstract

AbstractRationaleSynthetic opioids like fentanyl are contributing to the rise in rates of opioid use disorder and drug overdose deaths. Sleep dysfunction and circadian rhythm disruption may worsen during opioid withdrawal and persist during abstinence. Severe and persistent sleep and circadian alterations are putative factors in opioid craving and relapse. However, very little is known about the impact of fentanyl on sleep architecture and sleep-wake cycles, particularly opioid withdrawal. Further, circadian rhythms regulate sleep-wake cycles, and the circadian transcription factor, neuronal PAS domain 2 (NPAS2) is involved in the modulation of sleep architecture and drug reward. Here, we investigate the role of NPAS2 in fentanyl-induced sleep alterations.ObjectivesTo determine the effect of fentanyl administration and withdrawal on sleep architecture, and the role of NPAS2 as a factor in fentanyl-induced sleep changes.MethodsElectroencephalography (EEG) and electromyography (EMG) was used to measure non-rapid eye movement sleep (NREMS) and rapid eye movement sleep (REMS) at baseline and following acute and chronic fentanyl administration in wild-type and NPAS2-deficient male mice.ResultsAcute and chronic administration of fentanyl led to increased wake and arousal in both wild-type and NPAS2-deficient mice, an effect that was more pronounced in NPAS2-deficient mice. Chronic fentanyl administration led to decreased NREMS, which persisted during withdrawal, progressively decreasing from day 1 to 4 of withdrawal. The impact of fentanyl on NREMS and arousal was more pronounced in NPAS2-deficient mice.ConclusionsChronic fentanyl disrupts NREMS, leading to a progressive loss of NREMS during subsequent days of withdrawal. Loss of NPAS2 exacerbates the impact of fentanyl on sleep and wake, revealing a potential role for the circadian transcription factor in opioid-induced sleep changes.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3