Abstract
SummarySloths have a dense coat on which insects, algae, and fungi coexist in a symbiotic relationship. This complex ecosystem requires different levels of control, however, most of these mechanisms remain unknown. We investigated the bacterial communities inhabiting the hair of two- (Choloepus Hoffmani) and three-toed (Bradypus variegatus) sloths and evaluated their potential for producing antibiotic molecules capable of exerting control over the hair microbiota. The analysis of 16S rRNA amplicon sequence variants (ASVs) revealed that the communities in both host species are dominated by Actinobacteriota and Firmicutes. The most abundant genera were Brevibacterium, Kocuria/Rothia, Staphylococcus, Rubrobacter, Nesterenkonia, and Janibacter. In addition, we isolated nine strains of Brevibacterium and Rothia able to produce substances that inhibited the growth of common mammalian pathogens. The analysis of the biosynthetic gene clusters (BCGs) of these nine isolates suggests that the pathogen-inhibitory activity could be mediated by the presence of siderophores, terpenes, beta-lactones, Type III polyketide synthases (T3PKS), ribosomally synthesized, and post-translationally modified peptides (RiPPs), non-alpha poly-amino acids (NAPAA) like e-Polylysin, ectoine or nonribosomal peptides (NRPs). Our data suggest that Micrococcales inhabiting sloth hair could have a role in controlling microbial populations in that habitat, improving our understanding of this highly complex ecosystem.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献