Human blood plasma proteins modeling and binding affinities with Δ9-tetrahydrocannabinol active metabolites: In silico approach

Author:

Rathod Shravan B.ORCID,Soni Jinal C.,Verma Priyanshu,Rawat Yogita,Periwal Neha,Arora Pooja,Sood VikasORCID,Mansuri Mohmedyasin F.

Abstract

AbstractTetrahydrocannabinol (THC) is a key psychotropic constituent of cannabis sativa. It is also known as Δ9-tetrahydrocannabinol (Δ9-THC). Previous study suggested that owing to its high lipophilicity, it piles up in adipose tissue and it is disseminated into blood stream for prolonged time. Research suggests that numerous diseases such as multiple sclerosis, neurodegenerative disorders, epilepsy, schizophrenia, osteoporosis, cancer, glaucoma and cardiovascular disorders can be treated using this substance. However, apart from having therapeutic potential, many studies have reported detrimental outcomes along with addiction of Δ9-THC for short-term and long-term consumption. Thus, in this study, we determined the binding affinities of Δ9-THC and its two active metabolites, 11-Hydroxy-Δ9-tetrahydrocannabinol (11-OH-Δ9-THC) and 8beta,11-dihydroxy-Δ9-tetrahydrocannabinol (8β,11-diOH-Δ9-THC) with 401 human blood plasma proteins using molecular docking analysis. Results show that Δ9-THC has greater binding potential with plasma proteins as compared to other two metabolites. Overall, ADGRE5, ALB, APOA5, APOD, CP, PON1 and PON3 proteins showed the highest binding affinities with three cannabis metabolites.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3