Coupling of NOD2 to GIV is Required for Bacterial Sensing

Author:

Katkar Gajanan D.,Anandachar Mahitha Shree,Sinha Saptarshi,Ibeawuchi Stella-Rita,Espinoza Celia R.,Coates Jane,Malhotra Yashaswat S.,Mullick Madhubanti,Castillo Vanessa,Vo Daniella T.,Sahoo Debashis,Ghosh Pradipta

Abstract

ABSTRACT/SUMMARYSensing of pathogens by Nucleotide oligomerization domain (NOD)-like 2 receptor (NOD2) induces a protective inflammatory response that coordinates bacterial clearance. Polymorphisms in NOD2 impair bacterial clearance, leading to chronic gut inflammation in Crohn’s disease (CD) via mechanisms that remain incompletely understood. We identify GIV/Girdin (CCDC88A) as a NOD2-interactor that shapes bacterial sensing-and-signaling in macrophages. Myeloid-specific GIV depletion exacerbated and protracted infectious colitis and abolished the protective effect of muramyl dipeptide (MDP) in both chemical colitis and severe sepsis. In the presence of GIV, macrophages enhance anti-bacterial pathways downstream of NOD2, clear microbes rapidly and concomitantly suppress inflammation. GIV’s actions are mediated via its C-terminus, which directly binds the terminal leucine-rich repeat (LRR#10) of NOD2; binding is augmented by MDP and ATP, precedes receptor oligomerization, and is abolished by the1007fsCD-risk variant which lacks LRR#10. Findings illuminate mechanisms that underlie protective NOD2 signaling and loss of function in the major1007fsvariant.In briefThis work reveals a mechanism by which macrophages use their innate immune sensor, NOD2, to protect the host against overzealous inflammation during bacterial infections, and the consequences of its loss, as occurs in the most important Crohn’s disease-risk variant.GRAPHIC ABSTRACTHIGHLIGHTSGIV is a functional and direct interactor of the terminal LRR repeat of NOD2Mice lacking MФ GIV develop dysbiosis, protracted ileocolitis and sepsisMDP/NOD2-dependent protective host responses require GIVCD-risk NOD21007fsvariant lacking the terminal LRR#10 cannot bind GIV

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3